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Maximum hyperchaos in chaotic nonmonotonic neuronal networks
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Hyperchaos in chaotic nonmonotonic neuronal networks is discussed with computer simulations. Maximum
chaos with all Lyapunov exponents positive is found not only in the present dissipative model with weak
coupling connections between neurons, but also with some strong-coupling connections. Although the model
presented is a noninvertible map, the information dimension of simple chaos still yields a good approximation
to the Lyapunov dimensioiS1063-651X%97)08107-5

PACS numbdps): 87.10+e, 05.45+b

[. INTRODUCTION tions in a higher-dimensional diffeomorphism or invertible
maps[18], it is also important to study them directly. A

Neural network models have been extensively investisimple way to construct the maximum hyperchaos map with
gated with the goal of understanding mechanisms fo@ll Lyapunov exponents positive is to weakly couple one-
parallel-distributed information processin@—4]. Artificial ~ dimensional chaotic magd9-21], such as the coupled lo-
neural networks are composed of simple elements of artifigistic maps. In this case a chaotic attractor whtrpositive
cial neurons which aim at modeling biological neurons. InLyapunov exponents can be obtained. But if the coupling
order to study the chaotic characteristics of biological netcoefficients in these maps increase a little, one or more
works, a lot of attention has been focused on chaotic neurdlyapunov exponents will become negative. An interesting
networks[5-10. The characteristic exponent of a chaotic question arises and up to now seems not to be discussed: Can
system is the Lyapunov exponent. A high-dimensional chaostrong coupling one-dimensional chaotic maps possess all
with more than one positive Lyapunov exponent is referred-yapunov exponents positive? The main goal of this paper is
to as hyperchaogl1], which implies stretching in two or to give a definite answer to this question. Computer simula-
more directions and therefore leading to more complex dytions show that nonmonotonic chaotic neuronal models with
namical trajectories in phase space. Although a number dftrong coupling connection between neurons, i.e., with
chaotic neural networks have been studied, only a few oftrong couplings, can possess chaos with all Lyapunov expo-
them have devoted to the discussion of hyperchaos in neuraents positive.
networks. In this paper, hyperchaos in nonmonotonic neu- Dimension is one of the basic properties of an attractor.
ronal networkg9,10] is discussed. Although the Lyapunov dimensidi22] is not a suitable defi-

For chaos in dissipativéN-dimensional invertible sys- nition for noninvertible maps, simulation results show that
tems, the sums of their Lyapunov exponents are alway#or simple chaos in a low-dimensional noninvertible map, the
negativg 12,13. In detail, due to a zero Lyapunov exponent, fractal dimension still yields a good approximation to the
the number of positive Lyapunov exponents cannot be largdryapunov dimensiof23]. In this paper the fractal dimension
than N—2 for diffeomorphisms, while it cannot be larger of hyperchaos is discussed and compared with the Lyapunov
thanN—1 for invertible maps. Accordingly, there are some dimension.
discussions about maximum hyperchaos. Baier and Sahle
studied the generalized Rossler equation and pointed out that Il. CHAOTIC NEURONAL NETWORK
the maximum hyperchaos fdd=5 is with three positive ) . ] ) .
Lyapunov exponents, one zero and one negdtlv@. Fang Now we discuss in detail a chaotic nonmonotonic neu-
found that chaos in the four-dimensional complex-Lorenzfonal network [9] that consists ofN analog neurons
Haken equation can be with three positive Lyapunov expoiSi(t)}. i=1,... N, where every neuro§; is connected to
nents[15]. Baier and Klein reported that the maximum hy- all other neuronsS; by couplingsJ;;. We use parallel dy-
perchaos in generalized Henon maps posseddest  namics for the updating of neurons:
positive Lyapunov exponenfd 6]. One of the potential ap-
plications of complex hyperchaos is for cryptographic com-
munication[17]. ) ) _ ) )

On the contrary, maximum hyperchaos may result in aiHereh;(t+1) is the weighted input of theth neuron and is
Lyapunov exponents being positive for noninvertible dissi-€XPressed as
pative systems. Although we can embed noninvertible equa- N

hi(t+1)=zl JiS(, i=1,...N. 2
=

S(t+1)=f(h(t+1)), i=1,...N. 1)
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The input space of the neurons is ¢,), while the stable ' - - '
attracting space is within the regidn-1,1]. The present 02t

model becomes the analog Hopfield modeBif 0, and the I @ —
discrete Hopfield modéll] if «—« andB=0. Whena and | T
B are large enough, a chaotic attractor can be found in the H

0.0

discrete iterating mag3). Computer simulations show that .
for a fixeda or B, increasingB or « from zero will force the 02 u/
attractor, changing from fixed points through bifurcation to a

periodic attractor and at last to cha®. 04

. MAXIMUM HYPERCHAOS 08

Many hyperchaotic systems discussed so far are polyno-
mials in several variables, and in particular, most of them are
second-order polynomialsl1,14—-17,19-2]L In contrast to a
them, the map studied here is a transcendental function
which possesses a stronger nonlinearity than second—ord%
polynomials. Actually, the input;(t+ 1) to theith neuron is ‘
the linear sum of neuron stat&(t) with linear coupling
coefficientsJ;; . But no matter what values the synaptic con-
nectionsJ are, the relationship between the out@ (it +1)
and the weighted input;(t+ 1) is determined by the chaotic
transcendental mag8). The chaotic transcendental m&®)  orger chaos with only one positive Lyapunov exponent,
plays a more important role than the linear coupling conneécgecond-order chaos with two positive Lyapunov exponents,
tion (2). Our computer simulations show that it is easy 105 simjlarly for third-order and fourth-order chaos. Fourth-
f!nd hype_rchaos in the model with arbitrary coupling connec-q.qer chaos is actually the maximum hyperchaos in the
tion matrix J. _ model. The chaos with all Lyapunov exponents positive

As mentioned above, a simple way to construct hyperyeans that there is no stable or contracting subspace existing
chaos with all Lyapunov exponents positive is to coullle  stagistically: i.e., all of directions of the attractor are expand-
chaotic neurons and let the couplings between neurons smally gyt this instability does not cause the system trajectories
when compared with their self-feedbacks, i.&;>Ji; (i g escape from being confined in a bounded domain. It is the
#1). The coupling coefficients between neurons approachsirong nonlinear folding mechanism that keeps chaotic at-
ing zero means that each neuron can be regarded as an indgyctor stable. The maximum hyperchaos can be found in the
pendent chaotic neuron most of time. Because the probabilityagion from 3.78 to 5.96. For example, the four Lyapunov
that the neuronal states fall into the vicinity of zero, only exponents are 0.191, 0.167, 0.109, and 0.038.002) for
where the coupling effects between neurons need to be coRsrth-order chaos withy=5.60: 0.193, 0.172, 0.115, and

sidered approaches zero too. Then a chaotic attractor Wit 545 witha=5.00: and 0.173. 0.148. 0.087. and 0.018 with
N positive Lyapunov exponents can be obtained. In this casg,— 4 0g. The third-order chaos can be four;c[ﬂ?rnSG 3.76

all the Lyapunov exponents are almost the same and aps; (7,06, 7.93, and the four Lyapunov exponents are 0.156,
proach the Lyapunov exponent of the one-dimensional disy 133 0.056. and-0.034 with @=7.80. The second-order

crete iterating mag3). o chaos can be found if6.92, 6.0Q or [8.90, 8.08, and the
As a result of its strong nonlinearity, one can expect thakst_order chaos ifi8.78, 8.88 or [9.08, 9.14.

hyperchaos with all Lyapunov exponents positive can also 5 the o — B plane \'Nith 1.@£a$8.'0 and 1.6 3<6.0

exist in networks with strong-coupling connections betweenye regions with different kinds of attractors are shown in

neurons. Our computer simulations show that this is trueFig. 2. In the figure, the number represents anth-order
Consider the neural model with four neurons and the couple '

4 ' 6 8 10

FIG. 1. The four Lyapunov exponenisversusa from 2.0 to
0 with 8=1.39, input(1, 1, 1, 3, and connectiori4).

nents can be obtained simultaneously from the orthonormal-
ized coefficient§13]. Here 100 000 iterations are performed
after the initial 100 000 iterations have been cut.

From Fig. 1, we can distinguish four kinds of chaos: first-

synaptic: 60
0.01 150 0.03 oO. sol
1.60 0.01 0.10 1.0 aok
J= . 4 ‘ i
0.03 0.02 0.01 15 B .
3.0
0.00 1.00 1.70 0.0 o}
20
Figure 1 gives four Lyapunov exponents versusrom 2.0 | - X
to 10.0 WlthIB:l?)g and input StimulUS]., 1, 1, :D To find 10 0 20 30 40 50 60 70 80
all N Lyapunov exponents of the neural model, a setNof a

linearly independent unit vectorsiy(t)/\---Auy(t) is

evolved in the tangent space of the neural dynamics and FIG. 2. The regions with different kinds of attractors of the
repeatedly orthonormalized with the Gram-Schmidt or-q-g plane with 1.6ca<8.0 and 1.8s8<6.0. Here O represents
thonormalization procedure. Then tié Lyapunov expo- periodic attractorn (>0) representsith-order chaos.
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attractor. Here 10 000 iterations are performed after the ini-

tial 10 000 iterations omitted. Figure 2 shows that most 10
chaos are second-order hyperchaos. The maximum chaos
mainly concentrates in the range of &8<6.5 and
1.3=B8<23.

From Figs. 1 and 2, one can see that in a very narrow
range of bifurcation parameters, fast transitions from peri-
odic attractor, first-order or second-order chaos to fourth-
order chaos, or from periodic attractor or first-order chaos to
third-order chaos often occur. However, for a high-
dimensional chaotic system, the distribution of Lyapunov ex-
ponents is often considered as a smooth function of bifurca- 4l
tion parameterg21]. There should be a natural transition
route from first-order chaos via second-order hyperchaos to
third-order hyperchaos and at last to fourth-order hyper- 2L
chaos. Actually, our simulations show that when the compu-
tational precision is high enough, the natural transition route
appears gradually. For example, from Fig. 1 one can see that
there is a fast transition from periodic attractor to third-order 0
chaos whenx is changed from 3.54 to 3.56. But if the cal- -lnr
culating step is down to 10, a number of transitions be-
tween thenth-order attractor andn(+ 1)th-order attractor FIG. 3. The logarithm of box-counting numbersi(r) and the
can be found. entropyH(r) via logarithmic scale Infor the fourth-order hyper-

Moreover, computer simulations show that it is easy tochaos in neural model withy=3.0, $=2.0, and connectiof¥).
find hyperchaos in models with arbitrary coupling connec- . ) . L
tion matrix J, but not so easy to find a strong-coupling con- SioN of the chaos. To achieve this, the phase space is divided

nectionJ for models possess chaos with all Lyapunov expo-Nto N-dimensional boxes of side An initial point is cho-
nents positive. sen, and the map is iterated a sufficient number of times that

the subsequently generated points can be considered to be on
the attractor. A list is made of those boxes containing how
many points on the attractor. From the numhbér) of the

A chaotic attractor often possesses a fractal dimensiorhoxes that contain at least one point and from the entropy
For the high-dimensional invertible maps, we can determindd(r), the capacity and information dimensions can be fitted
its fractal dimension along the lines of the box-counting al-out respectively{26]. One example is given in Fig. 3 for
gorithm: Let a fiducial volume with side lengthevolve with ~ fourth-order hyperchaos of the neural model with
time. Each axis of the fiducial volume will be scaled by aa=3.0, 8=2.0, and connections in E¢}). Here the capac-
factor proportional to that direction’s Lyapunov number, i.e.,ity dimensionD.=3.27(=0.05) and information dimension
exp(\;). The direction with positive Lyapunov exponent will D,=3.26 are obtained. The data was achieved from 200 000
be expanded, thereby contributing an integer for fractal dipoints after the initial transient of 10 000 points have been
mension. cut with input stimulug(1, 1, 1, 2.

By this means the Lyapunov dimensif2?2] is obtained In Table I, the capacity dimensioD. and information
and normally approaches to capacity dimension. A precisdimensionD, are calculated for different kinds of chaotic
formulation is that the Lyapunov dimension is equal to theattractors of the neural model with synaptic connectidn
information dimension if the probability measures areFor a comparison, the Lyapunov dimensidds are also
smooth along unstable directiofi24,25. given, although it is not an appropriate concept. Apart from

However, in this paper, the Lyapunov dimension is notthe computational error, one can see from the table that the
true in general as the map is noninvertible. Therefore weapacity dimension is equal to the information dimension.
calculate the capacity dimension and the information dimenAnd one can also reach the following conclus[@3]: Even

H(r)

Inn(r)

IV. FRACTAL DIMENSIONS OF HYPERCHAOS

TABLE |. Comparison of capacity and information dimensions with Lyapunov dimension of chaos.

a B Sign of Lyapunov exponents D, (=*0.005) D. (*0.05) D, (*=0.05)
1.8 35 0--- 1.000 0.99 0.99
11.0 12.0 + - == 2.184 2.17 2.17
5.0 5.0 + 4+ - - 3.026 2.87 2.85
5.0 9.0 + 4+ - - 3.134 3.13 3.12
5.0 1.2 + + + = 4.0 2.97 2.97
2.5 3.0 + + + = 4.0 3.53 3.53
4.0 1.5 + + + + 4.0 3.05 3.04
3.0 2.0 ++ + + 4.0 3.27 3.26




56 MAXIMUM HYPERCHAOS IN CHAOTIC NONMONOTONIC ... 893

for simple chaos of a noninvertible high-dimensional map,weak-coupling connection between neurons, but also with
such as the first-order chaos, the information dimension stilkome strong-coupling connections. There is a natural transi-
yields a surprisingly good approximation to the Lyapunovtion route from first-order chaos via second-order chaos to
dimension. However, for high-order chaos, our computethird-order chaos and then to fourth-order chaos. The maxi-
simulation results show that there does not exist any simplenum hyperchaos, i.e., fourth-order chaos, can be applied to
relationship between the Lyapunov exponents and the inforeryptographic communicatiofil7]. The capacity dimension
mation dimension. A set of more positive Lyapunov expo-of hyperchaos equals to its information dimension. Even for
nents does not imply a larger fractal dimension for complexsimple chaos of a noninvertible map, the information dimen-
hyperchaos in the noninvertible map. For example, the fracsion still yields a surprisingly good approximation to the
tal dimension of the third-order hyperchaos wiik-2.5 and  Lyapunov dimension. But a set of more positive Lyapunov
B=3.0 is larger than that of fourth-order one with=3.0  exponents does not imply a larger fractal dimension for com-
andB=2.0 or witha=4.0 andg=1.5; the fractal dimension plex hyperchaos in a noninvertible map.
of second-order hyperchaos with+=5.0 and3=9.0 is larger
than that of the fourth-order one with=4.0 andg=1.5.
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