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Maximum hyperchaos in chaotic nonmonotonic neuronal networks
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Hyperchaos in chaotic nonmonotonic neuronal networks is discussed with computer simulations. Maximum
chaos with all Lyapunov exponents positive is found not only in the present dissipative model with weak
coupling connections between neurons, but also with some strong-coupling connections. Although the model
presented is a noninvertible map, the information dimension of simple chaos still yields a good approximation
to the Lyapunov dimension.@S1063-651X~97!08107-5#

PACS number~s!: 87.10.1e, 05.45.1b
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I. INTRODUCTION

Neural network models have been extensively inve
gated with the goal of understanding mechanisms
parallel-distributed information processing@1–4#. Artificial
neural networks are composed of simple elements of ar
cial neurons which aim at modeling biological neurons.
order to study the chaotic characteristics of biological n
works, a lot of attention has been focused on chaotic ne
networks @5–10#. The characteristic exponent of a chao
system is the Lyapunov exponent. A high-dimensional ch
with more than one positive Lyapunov exponent is refer
to as hyperchaos@11#, which implies stretching in two or
more directions and therefore leading to more complex
namical trajectories in phase space. Although a numbe
chaotic neural networks have been studied, only a few
them have devoted to the discussion of hyperchaos in ne
networks. In this paper, hyperchaos in nonmonotonic n
ronal networks@9,10# is discussed.

For chaos in dissipativeN-dimensional invertible sys
tems, the sums of their Lyapunov exponents are alw
negative@12,13#. In detail, due to a zero Lyapunov exponen
the number of positive Lyapunov exponents cannot be la
than N22 for diffeomorphisms, while it cannot be large
thanN21 for invertible maps. Accordingly, there are som
discussions about maximum hyperchaos. Baier and S
studied the generalized Rossler equation and pointed out
the maximum hyperchaos forN55 is with three positive
Lyapunov exponents, one zero and one negative@14#. Fang
found that chaos in the four-dimensional complex-Lore
Haken equation can be with three positive Lyapunov ex
nents@15#. Baier and Klein reported that the maximum h
perchaos in generalized Henon maps possessesN21
positive Lyapunov exponents@16#. One of the potential ap
plications of complex hyperchaos is for cryptographic co
munication@17#.

On the contrary, maximum hyperchaos may result in
Lyapunov exponents being positive for noninvertible dis
pative systems. Although we can embed noninvertible eq
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tions in a higher-dimensional diffeomorphism or invertib
maps @18#, it is also important to study them directly. A
simple way to construct the maximum hyperchaos map w
all Lyapunov exponents positive is to weakly couple on
dimensional chaotic maps@19–21#, such as the coupled lo
gistic maps. In this case a chaotic attractor withN positive
Lyapunov exponents can be obtained. But if the coupl
coefficients in these maps increase a little, one or m
Lyapunov exponents will become negative. An interest
question arises and up to now seems not to be discussed
strong coupling one-dimensional chaotic maps possess
Lyapunov exponents positive? The main goal of this pape
to give a definite answer to this question. Computer simu
tions show that nonmonotonic chaotic neuronal models w
strong coupling connection between neurons, i.e., w
strong couplings, can possess chaos with all Lyapunov ex
nents positive.

Dimension is one of the basic properties of an attrac
Although the Lyapunov dimension@22# is not a suitable defi-
nition for noninvertible maps, simulation results show th
for simple chaos in a low-dimensional noninvertible map, t
fractal dimension still yields a good approximation to t
Lyapunov dimension@23#. In this paper the fractal dimensio
of hyperchaos is discussed and compared with the Lyapu
dimension.

II. CHAOTIC NEURONAL NETWORK

Now we discuss in detail a chaotic nonmonotonic ne
ronal network @9# that consists ofN analog neurons
$Si(t)%, i51, . . . ,N, where every neuronSi is connected to
all other neuronsSj by couplingsJi j . We use parallel dy-
namics for the updating of neurons:

Si~ t11!5 f „hi~ t11!…, i51, . . . ,N. ~1!

Herehi(t11) is the weighted input of thei th neuron and is
expressed as

hi~ t11!5(
j51

N

Ji j Sj~ t !, i51, . . . ,N. ~2!

The activation function is an odd nonmonotonic function

f ~x!5tanh~ax!exp~2bx2!. ~3!

ty
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56 891MAXIMUM HYPERCHAOS IN CHAOTIC NONMONOTONIC . . .
The input space of the neurons is (2`,`), while the stable
attracting space is within the region@21,1#. The present
model becomes the analog Hopfield model ifb50, and the
discrete Hopfield model@1# if a→` andb50. Whena and
b are large enough, a chaotic attractor can be found in
discrete iterating map~3!. Computer simulations show tha
for a fixeda or b, increasingb or a from zero will force the
attractor, changing from fixed points through bifurcation to
periodic attractor and at last to chaos@9#.

III. MAXIMUM HYPERCHAOS

Many hyperchaotic systems discussed so far are poly
mials in several variables, and in particular, most of them
second-order polynomials@11,14–17,19–21#. In contrast to
them, the map studied here is a transcendental func
which possesses a stronger nonlinearity than second-o
polynomials. Actually, the inputhi(t11) to thei th neuron is
the linear sum of neuron statesSi(t) with linear coupling
coefficientsJi j . But no matter what values the synaptic co
nectionsJ are, the relationship between the outputSi(t11)
and the weighted inputhi(t11) is determined by the chaoti
transcendental map~3!. The chaotic transcendental map~3!
plays a more important role than the linear coupling conn
tion ~2!. Our computer simulations show that it is easy
find hyperchaos in the model with arbitrary coupling conn
tion matrix J.

As mentioned above, a simple way to construct hyp
chaos with all Lyapunov exponents positive is to coupleN
chaotic neurons and let the couplings between neurons s
when compared with their self-feedbacks, i.e.,Jii@Ji j ( i
Þ j ). The coupling coefficients between neurons approa
ing zero means that each neuron can be regarded as an
pendent chaotic neuron most of time. Because the probab
that the neuronal states fall into the vicinity of zero, on
where the coupling effects between neurons need to be
sidered approaches zero too. Then a chaotic attractor
N positive Lyapunov exponents can be obtained. In this c
all the Lyapunov exponents are almost the same and
proach the Lyapunov exponent of the one-dimensional
crete iterating map~3!.

As a result of its strong nonlinearity, one can expect t
hyperchaos with all Lyapunov exponents positive can a
exist in networks with strong-coupling connections betwe
neurons. Our computer simulations show that this is tr
Consider the neural model with four neurons and the cou
synaptic:

J5S 0.01 1.50 0.03 0.01

1.60 0.01 0.10 1.00

0.03 0.02 0.01 1.50

0.00 1.00 1.70 0.01

D . ~4!

Figure 1 gives four Lyapunov exponents versusa from 2.0
to 10.0 withb51.39 and input stimulus~1, 1, 1, 1!. To find
all N Lyapunov exponents of the neural model, a set ofN
linearly independent unit vectorsu1(t)`•••`uN(t) is
evolved in the tangent space of the neural dynamics
repeatedly orthonormalized with the Gram-Schmidt
thonormalization procedure. Then theN Lyapunov expo-
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nents can be obtained simultaneously from the orthonorm
ized coefficients@13#. Here 100 000 iterations are performe
after the initial 100 000 iterations have been cut.

From Fig. 1, we can distinguish four kinds of chaos: fir
order chaos with only one positive Lyapunov expone
second-order chaos with two positive Lyapunov expone
and similarly for third-order and fourth-order chaos. Four
order chaos is actually the maximum hyperchaos in
model. The chaos with all Lyapunov exponents posit
means that there is no stable or contracting subspace exi
statistically; i.e., all of directions of the attractor are expan
ing. But this instability does not cause the system trajecto
to escape from being confined in a bounded domain. It is
strong nonlinear folding mechanism that keeps chaotic
tractor stable. The maximum hyperchaos can be found in
region from 3.78 to 5.96. For example, the four Lyapun
exponents are 0.191, 0.167, 0.109, and 0.033 (60.002) for
fourth-order chaos witha55.60; 0.193, 0.172, 0.115, an
0.045 witha55.00; and 0.173, 0.148, 0.087, and 0.018 w
a54.00. The third-order chaos can be found in@3.56, 3.76#
or @7.06, 7.92#, and the four Lyapunov exponents are 0.15
0.133, 0.056, and20.034 witha57.80. The second-orde
chaos can be found in@5.92, 6.00# or @8.90, 8.06#, and the
first-order chaos in@8.78, 8.88# or @9.08, 9.14#.

On thea,2b plane with 1.0<a<8.0 and 1.0<b<6.0,
the regions with different kinds of attractors are shown
Fig. 2. In the figure, the numbern represents annth-order

FIG. 1. The four Lyapunov exponentsl versusa from 2.0 to
10.0 withb51.39, input~1, 1, 1, 1!, and connection~4!.

FIG. 2. The regions with different kinds of attractors of th
a-b plane with 1.0<a<8.0 and 1.0<b<6.0. Here 0 represent
periodic attractor;n (.0) representsnth-order chaos.
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attractor. Here 10 000 iterations are performed after the
tial 10 000 iterations omitted. Figure 2 shows that m
chaos are second-order hyperchaos. The maximum c
mainly concentrates in the range of 2.8<a<6.5 and
1.3<b<2.3.

From Figs. 1 and 2, one can see that in a very nar
range of bifurcation parameters, fast transitions from p
odic attractor, first-order or second-order chaos to fou
order chaos, or from periodic attractor or first-order chaos
third-order chaos often occur. However, for a hig
dimensional chaotic system, the distribution of Lyapunov
ponents is often considered as a smooth function of bifu
tion parameters@21#. There should be a natural transitio
route from first-order chaos via second-order hyperchao
third-order hyperchaos and at last to fourth-order hyp
chaos. Actually, our simulations show that when the com
tational precision is high enough, the natural transition ro
appears gradually. For example, from Fig. 1 one can see
there is a fast transition from periodic attractor to third-ord
chaos whena is changed from 3.54 to 3.56. But if the ca
culating step is down to 10212, a number of transitions be
tween thenth-order attractor and (n11)th-order attractor
can be found.

Moreover, computer simulations show that it is easy
find hyperchaos in models with arbitrary coupling conne
tion matrix J, but not so easy to find a strong-coupling co
nectionJ for models possess chaos with all Lyapunov exp
nents positive.

IV. FRACTAL DIMENSIONS OF HYPERCHAOS

A chaotic attractor often possesses a fractal dimens
For the high-dimensional invertible maps, we can determ
its fractal dimension along the lines of the box-counting
gorithm: Let a fiducial volume with side lengthe evolve with
time. Each axis of the fiducial volume will be scaled by
factor proportional to that direction’s Lyapunov number, i.
exp(li). The direction with positive Lyapunov exponent w
be expanded, thereby contributing an integer for fractal
mension.

By this means the Lyapunov dimension@22# is obtained
and normally approaches to capacity dimension. A prec
formulation is that the Lyapunov dimension is equal to t
information dimension if the probability measures a
smooth along unstable directions@24,25#.

However, in this paper, the Lyapunov dimension is n
true in general as the map is noninvertible. Therefore
calculate the capacity dimension and the information dim
i-
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sion of the chaos. To achieve this, the phase space is div
into N-dimensional boxes of sider . An initial point is cho-
sen, and the map is iterated a sufficient number of times
the subsequently generated points can be considered to b
the attractor. A list is made of those boxes containing h
many points on the attractor. From the numbern(r ) of the
boxes that contain at least one point and from the entr
H(r ), the capacity and information dimensions can be fit
out respectively@26#. One example is given in Fig. 3 fo
fourth-order hyperchaos of the neural model w
a53.0, b52.0, and connections in Eq.~4!. Here the capac-
ity dimensionDc53.27(60.05) and information dimension
DI53.26 are obtained. The data was achieved from 200
points after the initial transient of 10 000 points have be
cut with input stimulus~1, 1, 1, 1!.

In Table I, the capacity dimensionDc and information
dimensionDI are calculated for different kinds of chaot
attractors of the neural model with synaptic connection~4!.
For a comparison, the Lyapunov dimensionsDL are also
given, although it is not an appropriate concept. Apart fro
the computational error, one can see from the table that
capacity dimension is equal to the information dimensio
And one can also reach the following conclusion@23#: Even

FIG. 3. The logarithm of box-counting numbers lnn(r) and the
entropyH(r ) via logarithmic scale lnr for the fourth-order hyper-
chaos in neural model witha53.0, b52.0, and connection~4!.
.
TABLE I. Comparison of capacity and information dimensions with Lyapunov dimension of chaos

a b Sign of Lyapunov exponents DL (60.005) Dc (60.05) DI (60.05)

1.8 3.5 0 – – – 1.000 0.99 0.99
11.0 12.0 1 – – – 2.184 2.17 2.17
5.0 5.0 1 1 – – 3.026 2.87 2.85
5.0 9.0 1 1 – – 3.134 3.13 3.12
5.0 1.2 1 1 1 – 4.0 2.97 2.97
2.5 3.0 1 1 1 – 4.0 3.53 3.53
4.0 1.5 1 1 1 1 4.0 3.05 3.04
3.0 2.0 1 1 1 1 4.0 3.27 3.26
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56 893MAXIMUM HYPERCHAOS IN CHAOTIC NONMONOTONIC . . .
for simple chaos of a noninvertible high-dimensional ma
such as the first-order chaos, the information dimension
yields a surprisingly good approximation to the Lyapun
dimension. However, for high-order chaos, our compu
simulation results show that there does not exist any sim
relationship between the Lyapunov exponents and the in
mation dimension. A set of more positive Lyapunov exp
nents does not imply a larger fractal dimension for comp
hyperchaos in the noninvertible map. For example, the fr
tal dimension of the third-order hyperchaos witha52.5 and
b53.0 is larger than that of fourth-order one witha53.0
andb52.0 or witha54.0 andb51.5; the fractal dimension
of second-order hyperchaos witha55.0 andb59.0 is larger
than that of the fourth-order one witha54.0 andb51.5.

V. CONCLUSION

In this paper we show that hyperchaos can easily be fo
in the neural network model with nonmonotonic activati
function ~3!. The hyperchaos with all Lyapunov exponen
positive is found not only in our dissipative model with
ev
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weak-coupling connection between neurons, but also w
some strong-coupling connections. There is a natural tra
tion route from first-order chaos via second-order chaos
third-order chaos and then to fourth-order chaos. The m
mum hyperchaos, i.e., fourth-order chaos, can be applie
cryptographic communication@17#. The capacity dimension
of hyperchaos equals to its information dimension. Even
simple chaos of a noninvertible map, the information dime
sion still yields a surprisingly good approximation to th
Lyapunov dimension. But a set of more positive Lyapun
exponents does not imply a larger fractal dimension for co
plex hyperchaos in a noninvertible map.
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